Part Number Hot Search : 
P09N70P 30N06 ACHIP LB1730 NDUCTOR 1008001S 00102 MAX23351
Product Description
Full Text Search
 

To Download V23990-P630-A40 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  V23990-P630-A40-pm preliminary datasheet flow 90pim 1 1200v/15a trench fieldstop technology igbt4 for low saturation loss supports design with 90 mounting angle between heatsink and pcb clip-in pcb mounting clip or screw on heatsink mounting industrial drives V23990-P630-A40 t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 27 t c =80c 36 t h =80c 33 t c =80c 50 maximum junction temperature t j max 150 c inverter transistor t h =80c 21 t c =80c 26 t h =80c 62 t c =80c 95 t sc t j 150c 10 s v cc v ge =15v 800 v w a v c i cpulse a v ge a t j =t j max vce 1200v, tj top max 175 t p limited by t j max gate-emitter peak voltage short circuit ratings v v ce i c t j =t j max turn off safe operating area 20 t j max p tot repetitive peak collector current collector-emitter break down voltage dc collector current power dissipation per igbt maximum junction temperature i 2 t t j =150c a features flow90pim 1 target applications schematic dc forward current surge forward current a t j =25c t j =t j max types i 2 t-value maximum ratings i fav a 2 s i fsm condition input rectifier diode 200 t j =t j max t p =10ms 220 power dissipation per diode p tot w 1200 45 45 copyright vincotech 1 revision: 1
V23990-P630-A40-pm preliminary datasheet t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter fwd t h =80c 14 t c =80c 17 t h =80c 44 t c =80c 67 brake transistor t h =80c 13 t c =80c 15 t h =80c 46 t c =80c 70 t sc t j 150c 10 s v cc v ge =15v 800 v brake fwd t j =25c t h =80c 14 t c =80c 19 t h =80c 31 t c =80c 48 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm cti >200 v v c w 1200 a a t j =25c v rrm v 30 i f 1200 dc forward current short circuit ratings turn off safe operating area dc collector current power dissipation per igbt gate-emitter peak voltage p tot maximum junction temperature t j max t p limited by t j max t j =t j max a 24 a 24 vce 1200v, tj top max collector-emitter break down voltage repetitive peak collector current v ce i cpuls i c w 175 c v rrm p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current peak repetitive reverse voltage c i frm p tot maximum junction temperature t j max repetitive peak forward current power dissipation per diode t j =t j max t j =t j max t j =t j max t p limited by t j max w a a v 20 175 a 1200 peak repetitive reverse voltage maximum junction temperature t j max i frm v ge power dissipation per diode storage temperature t stg -40?+125 c -40?+(tjmax - 25) c comparative tracking index insulation voltage creepage distance t op operation temperature under switching condition clearance 150 t p limited by t j max 18 copyright vincotech 2 revision: 1
V23990-P630-A40-pm preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max t j =25c 1 1,22 1,5 t j =125c 1,20 t j =25c 0,93 t j =125c 0,81 t j =25c 12 t j =125c 16 t j =25c 0.05 t j =125c thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,14 k/w t j =25c 5 5,8 6,5 t j =150c t j =25c 1,6 1,86 2,1 t j =150c 2,22 t j =25c 0,002 t j =150c t j =25c 120 t j =150c t j =25c 85 t j =150c 93 t j =25c 30 t j =150c 32 t j =25c 214 t j =150c 285 t j =25c 83 t j =150c 142 t j =25c 1,17 t j =150c 1,78 t j =25c 0,89 t j =150c 1,53 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,52 k/w t j =25c 1,2 1,80 2,2 t j =150c 1,72 t j =25c 10 t j =150c 13 t j =25c 297 t j =150c 505 t j =25c 1,51 t j =150c 3,04 di ( rec ) max t j =25c 50 /d t t j =150c 41 t j =25c 0,59 t j =150c 1,22 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,15 k/w 15 none tj=25c 80 15 15 15 15 0 0 t r t d(off) c rss q rr t rr r gint erec q gate v ge(th) v ce(sat) f=1mhz i ces c oss i rrm v f i ges t f e on e off t d(on) input capacitance output capacitance turn-off energy loss per pulse integrated gate resistor inverter transistor gate emitter threshold voltage value conditions characteristic values forward voltage threshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode 25 25 25 v v m ? ma reverse current i r a/ s pf c a v v mws ns mws rgon=32 ? 20 15 rgoff=32 ? 1200 v ce =v ge turn-on energy loss per pulse reverse recovered charge inverter fwd peak reverse recovery current reverse transfer capacitance diode forward voltage gate charge c ies peak rate of fall of recovery current collector-emitter saturation voltage collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current reverse recovery time reverse recovered energy 0,0005 15 15 25 0 960 600 15 600 1600 rgon=32 ? 55 900 nc na v ma ? ns tj=25c 80 copyright vincotech 3 revision: 1
V23990-P630-A40-pm preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value conditions characteristic values t j =25c 5 5,8 6,5 t j =150c t j =25c 1,6 1,86 2,1 t j =150c 2,15 t j =25c 0,001 t j =150c t j =25c 120 t j =150c none t j =25c 60 t j =150c 61 t j =25c 27 t j =150c 26 t j =25c 179 t j =150c 247 t j =25c 68 t j =150c 137 t j =25c 0,51 t j =150c 0,79 t j =25c 0,45 t j =150c 0,78 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,05 k/w t j =25c 1 1,76 2,3 t j =125c 1,69 t j =25c 250 t j =125c t j =25c 6 t j =125c 8 t j =25c 374 t j =125c 637 t j =25c 1,01 t j =125c 1,01 di ( rec ) max t j =25c 39 /d t t j =125c 34 t j =25c 0,46 t j =125c 0,96 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,23 k/w rgon=32 ? vincotech ntc reference tj=25c b k tj=25c 3950 k tj=25c 3996 b-value tol. 3% b (25/100) b-value b (25/50) tol. 3% collector-emitter cut-off incl diode gate emitter threshold voltage a v v mws c v ns a/ s a % ? 22000 30 tj=25c 50 490 tj=25c 50 2 200 collector-emitter saturation voltage turn-off energy loss per pulse rise time gate charge input capacitance q gate reverse transfer capacitance turn-on energy loss per pulse r gint gate-emitter leakage current peak rate of fall of recovery current peak reverse recovery current reverse recovered charge brake transistor output capacitance c rss integrated gate resistor turn-on delay time t f fall time t d(on) t r turn-off delay time c oss e on t d(off) v ge(th) v ce(sat) e off nc mw/k power dissipation p mw rated resistance r power dissipation constant deviation of r100 960 r/r r100=1486 ? 0 15 15 f=1mhz c ies rgon=32 ? rgoff=32 ? v ce =v ge i ces i ges 15 0 ? ma na ns pf mws 20 v f 8 0,0003 i r i rrm diode forward voltage reverse leakage current 15 brake fwd reverse recovery energy t rr q rr e rec reverse recovery time thermistor 600 8 8 8 0 8 1200 1200 600 25 5 -5 tj=25c tc=25c tc=100c tj=25c copyright vincotech 4 revision: 1
V23990-P630-A40-pm preliminary datasheet figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 output inverter igbt figure 4 output inverter fwd typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 10 20 30 40 50 60 012345 v ce (v) i c (a) 0 3 6 9 12 15 024681012 v ge (v) i c (a) t j = 25c t j = t j ma x -25c 0 5 10 15 20 0,0 0,5 1,0 1,5 2,0 2,5 v f (v) i f (a) t j = 25c t j = t j m ax -25c 0 10 20 30 40 50 60 012345 v ce (v) i c (a) copyright vincotech 5 revision: 1
V23990-P630-A40-pm preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 15 a r goff = 32 ? figure 7 output inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 15 a output inverter e on high t e off high t e on low t e off low t 0 1 2 3 4 5 0 5 10 15 20 25 30 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 1 2 3 4 5 0 30 60 90 120 150 r g ( ) e (mws) e rec t j = t jmax -25c e rec t j = 25c 0 0,3 0,6 0,9 1,2 1,5 0 5 10 15 20 25 30 i c (a) e (mws) e rec t j = t jmax -25c e rec t j = 25c 0 0,3 0,6 0,9 1,2 1,5 0 30 60 90 120 150 r g ( ) e (mws) copyright vincotech 6 revision: 1
V23990-P630-A40-pm preliminary datasheet figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 15 a r goff = 32 ? figure 11 output inverter fwd figure 12 output inverter fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 15 a r gon = 32 ? v ge = 15 v output inverter t doff t f t don t r 0,00 0,01 0,10 1,00 0 5 10 15 20 25 30 i c (a) t ( s) t j = t jmax -25c t rr t j = 25c t rr 0,0 0,2 0,4 0,6 0,8 0 30 60 90 120 150 r gon ( ) t rr ( s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 30 60 90 120 150 r g ( ) t ( s) t rr t j = t jmax -25c t rr t j = 25c 0,0 0,2 0,4 0,6 0,8 0 5 10 15 20 25 30 i c (a) t rr ( s) copyright vincotech 7 revision: 1
V23990-P630-A40-pm preliminary datasheet figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 15 a r gon = 32 ? v ge = 15 v figure 15 output inverter fwd figure 16 output inverter fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 15 a r gon = 32 ? v ge = 15 v output inverter i rrm t j = t jmax - 25c i rrm t j = 25c 0 5 10 15 20 25 0 30 60 90 120 150 r gon ( ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 0,8 1,6 2,4 3,2 4 0 30 60 90 120 150 r gon ( ) q rr ( c) t j = t jmax -25c i rrm t j = 25c i rrm 0 3 6 9 12 15 0 5 10 15 20 25 30 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 0,8 1,6 2,4 3,2 4 0 5 10 15 20 25 30 i c (a) q rr ( c) copyright vincotech 8 revision: 1
V23990-P630-A40-pm preliminary datasheet figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c )d i 0 /dt,di rec /dt = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 15 a r gon = 32 ? v ge = 15 v figure 19 output inverter igbt figure 20 output inverter fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 1,52 k/w r thjh = 1,23 k/w r thjh = 2,15 k/w r thjh = 1,74 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,15 1,0e+00 0,12 8,2e-01 0,03 7,7e+00 0,03 6,3e+00 0,59 1,6e-01 0,48 1,3e-01 0,11 1,1e+00 0,09 8,8e-01 0,44 4,3e-02 0,36 3,5e-02 0,39 1,8e-01 0,32 1,4e-01 0,23 7,0e-03 0,19 5,7e-03 0,90 5,5e-02 0,73 4,5e-02 0,11 5,4e-04 0,09 4,4e-04 0,37 8,9e-03 0,30 7,2e-03 0,16 1,8e-03 0,13 1,5e-03 output inverter thermal grease phase change interface thermal grease phase change interface 0 500 1000 1500 2000 0 30 60 90 120 150 r gon ( ) di rec / dt (a/ s) di 0 /dt di rec /dt 0 100 200 300 400 500 600 0 5 10 15 20 25 30 i c (a) di rec / dt (a/ s) di rec /dt di 0 /dt t op (s t z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 9 revision: 1
V23990-P630-A40-pm preliminary datasheet figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 c t j = 175 c v ge = 15 v figure 23 output inverter fwd figure 24 output inverter fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 c t j = 175 c output inverter 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 1
V23990-P630-A40-pm preliminary datasheet figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce )v ge = f(q ge ) at at d = single pulse i c = 15 a t h = 80 oc v ge = 15 v t j =t jmax oc figure 27 output inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical short circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge )v ge = f(q ge ) at at v ce = 600 v v ce 600 v t j 25 oc t j = 150 oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 10us 100us 1ms 10m s 100ms d c 10 0 10 3 0 2 4 6 8 10 12 14 16 18 0 20 40 60 80 100 120 q g (nc) v ge (v) 240v 960v 0 2 4 6 8 10 12 14 16 12 13 14 15 16 17 v ge (v) t sc ( s) 0 25 50 75 100 125 150 12 14 16 18 20 v ge (v) i c(sc) copyright vincotech 11 revision: 1
V23990-P630-A40-pm preliminary datasheet figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j =t jmax -25 oc switching mode : 3phase spwm 0 5 10 15 20 25 30 35 40 0 200 400 600 800 1000 1200 1400 v ce (v) i c (a) i c max v ce max i c module i c chip copyright vincotech 12 revision: 1
V23990-P630-A40-pm preliminary datasheet figure 1 brake igbt figure 2 brake igbt typical output characteristics typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 brake igbt figure 4 brake fwd typical transfer characteristics typical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v brake 0 5 10 15 20 25 30 012345 v ce (v) i c (a) 0 2 4 6 8 10 024681012 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 01234 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 012345 v ce (v) i c (a) copyright vincotech 13 revision: 1
V23990-P630-A40-pm preliminary datasheet figure 5 brake igbt figure 6 brake igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 8a r goff = 32 ? figure 7 brake fwd figure 8 brake fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 8a brake e rec t j = t jmax - 25c t j = 25c e rec 0 0,3 0,6 0,9 1,2 1,5 03691 21 5 i c (a) e (mws) e rec t j = t jmax -25c t j = 25c e rec 0,0 0,2 0,4 0,6 0,8 1,0 1,2 0 30 60 90 120 150 r g ( ) e (mws) e off t j = t jmax -25c e on e on t j = 25c e off 0,0 0,4 0,8 1,2 1,6 2,0 0481216 i c (a) e (mws) t j = t jmax -25c e off e on e on t j = 25c e off 0 0,3 0,6 0,9 1,2 1,5 0 30 60 90 120 150 r g ( ) e (mws) copyright vincotech 14 revision: 1
V23990-P630-A40-pm preliminary datasheet figure 9 brake igbt figure 10 brake igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 ? i c = 8a r goff = 32 ? figure 11 brake igbt figure 12 brake fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at d = tp / t at d = tp / t r thjh = 2,05 k/w r thjh = 1,66 k/w r thjh = 2,23 k/w r thjh = 1,81 k/w thermal grease phase change interface brake thermal grease phase change interface t doff t f t don t r 0,00 0,01 0,10 1,00 03691215 i c (a) t ( s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 30 60 90 120 150 r g ( ) t ( s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 15 revision: 1
V23990-P630-A40-pm preliminary datasheet figure 13 brake igbt figure 14 brake igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 15 brake fwd figure 16 brake fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 oc t j = 150 oc brake 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 60 70 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 16 revision: 1
V23990-P630-A40-pm preliminary datasheet figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 sd = t p / t r thjh = 2,137 k/w figure 3 rectifier diode figure 4 rectifier diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 oc t j = 150 oc input rectifier bridge 0 15 30 45 60 75 90 00 , 511 , 522 , 5 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 17 revision: 1
V23990-P630-A40-pm preliminary datasheet figure 1 thermistor typical ntc characteristic as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4000 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r/ ? copyright vincotech 18 revision: 1
V23990-P630-A40-pm preliminary datasheet t j 150 c r g on 32 ? r goff 32 ? figure 1 output inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t dof f , t eof f turn-on switching waveforms & definition of tdon, t eon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 15 a i c (100%) = 15 a t doff = 0,29 s t don = 0,09 s t eoff = 0,71 s t eon = 0,37 s figure 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 15 a i c (100%) = 15 a t f = 0,14 s t r = 0,03 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -25 0 25 50 75 100 125 -0,3 -0,1 0,1 0,3 0,5 0,7 0,9 time (us) % t doff t eoff v ce i c v ge i c 10% v ge 10% t don v ce 3% -50 0 50 100 150 200 3,8 4 4,2 4,4 4,6 time(us) % i c v ce t eon v ge fitted i c 10% i c 90% i c 60% i c 40% -25 0 25 50 75 100 125 0 0,1 0,2 0,3 0,4 0,5 0,6 time (us) % v ce i c t f i c 10% i c 90% -50 0 50 100 150 200 4 4,1 4,2 4,3 4,4 time(us) % t r v ce i c copyright vincotech 19 revision: 1
V23990-P630-A40-pm preliminary datasheet figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 9,02 kw p on (100%) = 9,02 kw e off (100%) = 1,53 mj e on (100%) = 1,78 mj t eoff = 0,71 s t eon = 0,37 s figure 7 output inverter fwd figure 8 output inverter igbt gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t r r v geoff = -15 v v d (100%) = 600 v v geon = 15 v i d (100%) = 15 a v c (100%) = 600 v i rrm (100%) = -13 a i c (100%) = 15 a t rr = 0,51 s q g = 108,88 nc switching definitions output inverter i c 1% v ge 90% -25 0 25 50 75 100 125 -0,2 0 0,2 0,4 0,6 0,8 time (us) % p off e off t eoff v ce 3% v ge 10% -50 0 50 100 150 200 3,9 4 4,1 4,2 4,3 4,4 4,5 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -20 0 20 40 60 80 100 120 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -150 -100 -50 0 50 100 150 3,8 4 4,2 4,4 4,6 4,8 5 time(us) % i d v d fitted copyright vincotech 20 revision: 1
V23990-P630-A40-pm preliminary datasheet figure 9 output inverter fwd figure 10 output inverter fwd turn-on switching waveforms & definition of t qr r turn-on switching waveforms & definition of t erec (t qrr = integrating time for q r r )( t erec = integrating time for e rec ) i d (100%) = 15 a p rec (100%) = 9,02 kw q rr (100%) = 3,04 c e rec (100%) = 1,22 mj t qrr = 1,03 s t erec = 1,03 s switching definitions output inverter t qrr -100 -50 0 50 100 150 3,8 4,2 4,6 5 5,4 % i d q rr time ( us ) -25 0 25 50 75 100 125 3,8 4,2 4,6 5 5,4 time(us) % p rec e rec t erec copyright vincotech 21 revision: 1
V23990-P630-A40-pm preliminary datasheet version ordering code in datamatrix as in packaging barcode as without thermal paste 12mm housing V23990-P630-A40 p630-a40 p630-a40 outline pinout ordering code & marking ordering code and marking - outline - pinout copyright vincotech 22 revision: 1
V23990-P630-A40-pm preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for te chnically tr ained st aff. target product status datasheet status definition this datasheet contains the design specifications for product development. specific ations may change in any manner without notice. the dat a contained is exclusively intended for technica lly trai ned staff. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tes ted values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to i mprove reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product o r circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express wri tten approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 23 revision: 1


▲Up To Search▲   

 
Price & Availability of V23990-P630-A40

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X